Neural-network methods for boundary value problems with irregular boundaries

نویسندگان

  • Isaac E. Lagaris
  • Aristidis Likas
  • Dimitris G. Papageorgiou
چکیده

Partial differential equations (PDEs) with boundary conditions (Dirichlet or Neumann) defined on boundaries with simple geometry have been successfully treated using sigmoidal multilayer perceptrons in previous works. This article deals with the case of complex boundary geometry, where the boundary is determined by a number of points that belong to it and are closely located, so as to offer a reasonable representation. Two networks are employed: a multilayer perceptron and a radial basis function network. The later is used to account for the exact satisfaction of the boundary conditions. The method has been successfully tested on two-dimensional and three-dimensional PDEs and has yielded accurate results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Identification of Circular Cavity in a 2D Object via Boundary Temperature Measurements Using Artificial Neural Network

In geometric inverse problems, it is assumed that some parts of domain boundaries are not accessible and geometric shape and dimensions of these parts cannot be measured directly. The aim of inverse geometry problems is to approximate the unknown boundary shape by conducting some experimental measurements on accessible surfaces. In the present paper, the artificial neural network is used to sol...

متن کامل

Neural Network Methods for Boundary Value Problems Defined in Arbitrarily Shaped Domains

Partial differential equations (PDEs) with Dirichlet boundary conditions defined on boundaries with simple geomerty have been succesfuly treated using sigmoidal multilayer perceptrons in previous works [1, 2]. This article deals with the case of complex boundary geometry, where the boundary is determined by a number of points that belong to it and are closely located, so as to offer a reasonabl...

متن کامل

A phase transition in the first passage of a Brownian process through a fluctuating boundary with implications for neural coding.

Finding the first time a fluctuating quantity reaches a given boundary is a deceptively simple-looking problem of vast practical importance in physics, biology, chemistry, neuroscience, economics, and industrial engineering. Problems in which the bound to be traversed is itself a fluctuating function of time include widely studied problems in neural coding, such as neuronal integrators with irr...

متن کامل

Kalman filter and Neural Network methods for detecting irregular variations of TEC around the time of powerful Mexico (Mw=8.2) earthquake of September 08, 2017

In 98 km SW of Tres Picos in Mexico (15.022°N, 93.899°W, 47.40 km depth) a powerful earthquake of Mw=8.2 took place at 04:49:19 UTC (LT=UTC-05:00) on September 8, 2017. In this study, using three standard, classical and intelligent methods including median, Kalman filter, and Neural Network, respectively, the GPS Total Electron Content (TEC) measurements of three months were surveyed to detect ...

متن کامل

Study of Love Waves in a Clamped Viscoelastic Medium with Irregular Boundaries

A mathematical model is presented to investigate the effects of sandiness, irregular boundary interfaces, heterogeneity and viscoelasticity on the phase velocity of Love waves. Geometry of the problem is consisting of an initially stressed viscoelastic layer with corrugated irregular boundaries, which is sandwiched between heterogeneous orthotropic semi-infinite half-space with initial stress a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 11 5  شماره 

صفحات  -

تاریخ انتشار 2000